#include "workspace.h" #include "datatypes/vector.h" #include "objects/base/instance.h" #include "objects/jointsservice.h" #include "objects/joint/jointinstance.h" #include "objects/datamodel.h" #include "physics/util.h" #include #include rp::PhysicsCommon* Workspace::physicsCommon = new rp::PhysicsCommon; Workspace::Workspace(): Service(&TYPE) { } Workspace::~Workspace() { if (physicsWorld && physicsCommon) physicsCommon->destroyPhysicsWorld(physicsWorld); } void Workspace::InitService() { if (initialized) return; initialized = true; physicsWorld = physicsCommon->createPhysicsWorld(); physicsWorld->setGravity(rp::Vector3(0, -196.2, 0)); // world->setContactsPositionCorrectionTechnique(rp3d::ContactsPositionCorrectionTechnique::BAUMGARTE_CONTACTS); physicsWorld->setNbIterationsPositionSolver(2000); physicsWorld->setNbIterationsVelocitySolver(2000); // physicsWorld->setSleepLinearVelocity(10); // physicsWorld->setSleepAngularVelocity(5); // physicsWorld->setEventListener(&eventListener); // Sync all parts for (auto it = this->GetDescendantsStart(); it != this->GetDescendantsEnd(); it++) { InstanceRef obj = *it; if (!obj->IsA()) continue; std::shared_ptr part = obj->CastTo().expect(); this->SyncPartPhysics(part); part->MakeJoints(); } // Activate all joints for (auto it = this->GetDescendantsStart(); it != this->GetDescendantsEnd(); it++) { InstanceRef obj = *it; if (!obj->IsA()) continue; std::shared_ptr joint = obj->CastTo().expect(); joint->UpdateProperty("Part0"); } for (auto obj : dataModel().value()->GetService()->GetChildren()) { if (!obj->IsA()) continue; std::shared_ptr joint = obj->CastTo().expect(); joint->UpdateProperty("Part0"); } } void Workspace::SyncPartPhysics(std::shared_ptr part) { if (!physicsWorld) return; glm::mat4 rotMat = glm::mat4(1.0f); rp::Transform transform = part->cframe; if (!part->rigidBody) { part->rigidBody = physicsWorld->createRigidBody(transform); } else { part->rigidBody->setTransform(transform); } rp::BoxShape* shape = physicsCommon->createBoxShape(glmToRp(part->size * glm::vec3(0.5f))); if (part->rigidBody->getNbColliders() > 0) part->rigidBody->removeCollider(part->rigidBody->getCollider(0)); part->rigidBody->addCollider(shape, rp::Transform()); part->rigidBody->setType(part->anchored ? rp::BodyType::STATIC : rp::BodyType::DYNAMIC); part->rigidBody->getCollider(0)->setCollisionCategoryBits(0b11); rp::Material& material = part->rigidBody->getCollider(0)->getMaterial(); material.setFrictionCoefficient(0.35); material.setMassDensity(1.f); //https://github.com/DanielChappuis/reactphysics3d/issues/170#issuecomment-691514860 part->rigidBody->updateMassFromColliders(); part->rigidBody->updateLocalInertiaTensorFromColliders(); part->rigidBody->setLinearVelocity(part->velocity); // part->rigidBody->setMass(density * part->size.x * part->size.y * part->size.z); part->rigidBody->setUserData(&*part); } void Workspace::PhysicsStep(float deltaTime) { // Step the simulation a few steps physicsWorld->update(std::min(deltaTime / 2, (1/60.f))); // Naive implementation. Parts are only considered so if they are just under Workspace // TODO: Add list of tracked parts in workspace based on their ancestry using inWorkspace property of Instance for (auto it = this->GetDescendantsStart(); it != this->GetDescendantsEnd(); it++) { InstanceRef obj = *it; if (obj->GetClass()->className != "Part") continue; // TODO: Replace this with a .IsA call instead of comparing the class name directly std::shared_ptr part = std::dynamic_pointer_cast(obj); const rp::Transform& transform = part->rigidBody->getTransform(); part->cframe = CFrame(transform); part->velocity = part->rigidBody->getLinearVelocity(); // part->rigidBody->enableGravity(true); for (auto& joint : part->secondaryJoints) { if (joint.expired() || !joint.lock()->IsA("RotateV")) continue; std::shared_ptr motor = joint.lock()->CastTo().expect(); float rate = motor->part0.lock()->GetSurfaceParamB(motor->c0.LookVector().Unit()) * 30; // part->rigidBody->enableGravity(false); part->rigidBody->setAngularVelocity(-(motor->part0.lock()->cframe * motor->c0).LookVector() * rate); } } } RaycastResult::RaycastResult(const rp::RaycastInfo& raycastInfo) : worldPoint(raycastInfo.worldPoint) , worldNormal(raycastInfo.worldNormal) , hitFraction(raycastInfo.hitFraction) , triangleIndex(raycastInfo.triangleIndex) , body(raycastInfo.body) , collider(raycastInfo.collider) {} class NearestRayHit : public rp::RaycastCallback { rp::Vector3 startPos; std::optional filter; std::optional nearestHit; float nearestHitDistance = -1; // Order is not guaranteed, so we have to figure out the nearest object using a more sophisticated algorith, rp::decimal notifyRaycastHit(const rp::RaycastInfo& raycastInfo) override { // If the detected object is further away than the nearest object, continue. int distance = (raycastInfo.worldPoint - startPos).length(); if (nearestHitDistance != -1 && distance >= nearestHitDistance) return 1; if (!filter) { nearestHit = raycastInfo; nearestHitDistance = distance; return 1; } std::shared_ptr part = partFromBody(raycastInfo.body); FilterResult result = filter.value()(part); if (result == FilterResult::BLOCK) { nearestHit = std::nullopt; nearestHitDistance = distance; return 1; } else if (result == FilterResult::TARGET) { nearestHit = raycastInfo; nearestHitDistance = distance; return 1; } return 1; }; public: NearestRayHit(rp::Vector3 startPos, std::optional filter = std::nullopt) : startPos(startPos), filter(filter) {} std::optional getNearestHit() { return nearestHit; }; }; std::optional Workspace::CastRayNearest(glm::vec3 point, glm::vec3 rotation, float maxLength, std::optional filter, unsigned short categoryMaskBits) { rp::Ray ray(glmToRp(point), glmToRp(glm::normalize(rotation)) * maxLength); NearestRayHit rayHit(glmToRp(point), filter); physicsWorld->raycast(ray, &rayHit, categoryMaskBits); return rayHit.getNearestHit(); } void Workspace::DestroyRigidBody(rp::RigidBody* rigidBody) { physicsWorld->destroyRigidBody(rigidBody); }