#include "workspace.h" #include "datatypes/variant.h" #include "datatypes/ref.h" #include "datatypes/vector.h" #include "logger.h" #include "objects/base/instance.h" #include "objects/part/part.h" #include "objects/part/wedgepart.h" #include "objects/service/jointsservice.h" #include "objects/joint/jointinstance.h" #include "objects/datamodel.h" #include "physics/util.h" #include "timeutil.h" #include #include #include #include rp::PhysicsCommon* Workspace::physicsCommon = new rp::PhysicsCommon; Workspace::Workspace(): Service(&TYPE), physicsEventListener(this) { physicsWorld = physicsCommon->createPhysicsWorld(); } Workspace::~Workspace() { if (physicsCommon) physicsCommon->destroyPhysicsWorld(physicsWorld); } PhysicsEventListener::PhysicsEventListener(Workspace* parent) : workspace(parent) {} void PhysicsEventListener::onContact(const rp::CollisionCallback::CallbackData& data) { workspace->contactQueueLock.lock(); for (size_t i = 0; i < data.getNbContactPairs(); i++) { auto pair = data.getContactPair(i); auto type = pair.getEventType(); if (type == rp::CollisionCallback::ContactPair::EventType::ContactStay) continue; if (type == reactphysics3d::CollisionCallback::ContactPair::EventType::ContactStay) continue; ContactItem contact; contact.part0 = reinterpret_cast(pair.getBody1()->getUserData())->shared(); contact.part1 = reinterpret_cast(pair.getBody2()->getUserData())->shared(); contact.action = type == reactphysics3d::CollisionCallback::ContactPair::EventType::ContactStart ? ContactItem::CONTACTITEM_TOUCHED : ContactItem::CONTACTITEM_TOUCHENDED; workspace->contactQueue.push(contact); } workspace->contactQueueLock.unlock(); } void PhysicsEventListener::onTrigger(const rp::OverlapCallback::CallbackData& data) { workspace->contactQueueLock.lock(); for (size_t i = 0; i < data.getNbOverlappingPairs(); i++) { auto pair = data.getOverlappingPair(i); auto type = pair.getEventType(); if (type == rp::OverlapCallback::OverlapPair::EventType::OverlapStay) continue; auto part0 = reinterpret_cast(pair.getBody1()->getUserData())->shared(); auto part1 = reinterpret_cast(pair.getBody2()->getUserData())->shared(); if (type == reactphysics3d::OverlapCallback::OverlapPair::EventType::OverlapStart) { part0->Touched->Fire({ (Variant)InstanceRef(part1) }); part1->Touched->Fire({ (Variant)InstanceRef(part0) }); } else if (type == reactphysics3d::OverlapCallback::OverlapPair::EventType::OverlapExit) { part0->TouchEnded->Fire({ (Variant)InstanceRef(part1) }); part1->TouchEnded->Fire({ (Variant)InstanceRef(part0) }); } } workspace->contactQueueLock.unlock(); } void Workspace::InitService() { if (initialized) return; initialized = true; physicsWorld->setGravity(rp::Vector3(0, -196.2, 0)); // world->setContactsPositionCorrectionTechnique(rp3d::ContactsPositionCorrectionTechnique::BAUMGARTE_CONTACTS); // physicsWorld->setNbIterationsPositionSolver(2000); // physicsWorld->setNbIterationsVelocitySolver(2000); // physicsWorld->setSleepLinearVelocity(10); // physicsWorld->setSleepAngularVelocity(5); physicsWorld->setEventListener(&physicsEventListener); // Create meshes WedgePart::createWedgeShape(physicsCommon); } void Workspace::OnRun() { // Make joints for (auto it = this->GetDescendantsStart(); it != this->GetDescendantsEnd(); it++) { if (!it->IsA()) continue; std::shared_ptr part = it->CastTo().expect(); part->MakeJoints(); } // Activate all joints for (auto it = this->GetDescendantsStart(); it != this->GetDescendantsEnd(); it++) { std::shared_ptr obj = *it; if (!obj->IsA()) continue; std::shared_ptr joint = obj->CastTo().expect(); joint->UpdateProperty("Part0"); } for (auto obj : dataModel().value()->GetService()->GetChildren()) { if (!obj->IsA()) continue; std::shared_ptr joint = obj->CastTo().expect(); joint->UpdateProperty("Part0"); } } void Workspace::updatePartPhysics(std::shared_ptr part) { rp::Transform transform = part->cframe; if (!part->rigidBody) { part->rigidBody = physicsWorld->createRigidBody(transform); } else { part->rigidBody->setTransform(transform); } part->updateCollider(physicsCommon); part->rigidBody->setType(part->anchored ? rp::BodyType::STATIC : rp::BodyType::DYNAMIC); part->rigidBody->getCollider(0)->setCollisionCategoryBits(0b11); part->rigidBody->getCollider(0)->setIsSimulationCollider(part->canCollide); part->rigidBody->getCollider(0)->setIsTrigger(!part->canCollide); rp::Material& material = part->rigidBody->getCollider(0)->getMaterial(); material.setFrictionCoefficient(0.35); material.setMassDensity(1.f); //https://github.com/DanielChappuis/reactphysics3d/issues/170#issuecomment-691514860 part->rigidBody->updateMassFromColliders(); part->rigidBody->updateLocalInertiaTensorFromColliders(); part->rigidBody->setLinearVelocity(part->velocity); // part->rigidBody->setMass(density * part->size.x * part->size.y * part->size.z); part->rigidBody->setUserData(&*part); } void Workspace::ProcessContactEvents() { contactQueueLock.lock(); while (!contactQueue.empty()) { ContactItem& contact = contactQueue.front(); contactQueue.pop(); if (contact.action == ContactItem::CONTACTITEM_TOUCHED) { contact.part0->Touched->Fire({ (Variant)InstanceRef(contact.part1) }); contact.part1->Touched->Fire({ (Variant)InstanceRef(contact.part0) }); } else if (contact.action == ContactItem::CONTACTITEM_TOUCHENDED) { contact.part0->TouchEnded->Fire({ (Variant)InstanceRef(contact.part1) }); contact.part1->TouchEnded->Fire({ (Variant)InstanceRef(contact.part0) }); } } contactQueueLock.unlock(); } void Workspace::SyncPartPhysics(std::shared_ptr part) { if (globalPhysicsLock.try_lock()) { updatePartPhysics(part); globalPhysicsLock.unlock(); } else { part->rigidBodyDirty = true; } } tu_time_t physTime; void Workspace::PhysicsStep(float deltaTime) { tu_time_t startTime = tu_clock_micros(); std::scoped_lock lock(globalPhysicsLock); physicsWorld->update(std::min(deltaTime / 2, (1/60.f))); // Update queued objects queueLock.lock(); for (QueueItem item : bodyQueue) { if (item.action == QueueItem::QUEUEITEM_ADD) { simulatedBodies.push_back(item.part); item.part->simulationTicket = --simulatedBodies.end(); } else if (item.part->simulationTicket.has_value()) { simulatedBodies.erase(item.part->simulationTicket.value()); item.part->simulationTicket = std::nullopt; } } queueLock.unlock(); // TODO: Add list of tracked parts in workspace based on their ancestry using inWorkspace property of Instance for (std::shared_ptr part : simulatedBodies) { // If the part's body is dirty, update it now instead if (part->rigidBodyDirty) { updatePartPhysics(part); part->rigidBodyDirty = false; continue; } if (!part->rigidBody) continue; // Sync properties const rp::Transform& transform = part->rigidBody->getTransform(); part->cframe = CFrame(transform); part->velocity = part->rigidBody->getLinearVelocity(); // part->rigidBody->enableGravity(true); // RotateV/Motor joint for (auto& joint : part->secondaryJoints) { if (joint.expired() || !joint.lock()->IsA("RotateV")) continue; std::shared_ptr motor = joint.lock()->CastTo().expect(); float rate = motor->part0.lock()->GetSurfaceParamB(-motor->c0.LookVector().Unit()) * 30; // part->rigidBody->enableGravity(false); part->rigidBody->setAngularVelocity(-(motor->part0.lock()->cframe * motor->c0).LookVector() * rate); } // Destroy fallen parts if (part->cframe.Position().Y() < this->fallenPartsDestroyHeight) { auto parent = part->GetParent(); part->Destroy(); // If the parent of the part is a Model, destroy it too if (parent.has_value() && parent.value()->IsA("Model")) parent.value()->Destroy(); } } physTime = tu_clock_micros() - startTime; } RaycastResult::RaycastResult(const rp::RaycastInfo& raycastInfo) : worldPoint(raycastInfo.worldPoint) , worldNormal(raycastInfo.worldNormal) , hitFraction(raycastInfo.hitFraction) , triangleIndex(raycastInfo.triangleIndex) , body(raycastInfo.body) , collider(raycastInfo.collider) {} class NearestRayHit : public rp::RaycastCallback { rp::Vector3 startPos; std::optional filter; std::optional nearestHit; float nearestHitDistance = -1; // Order is not guaranteed, so we have to figure out the nearest object using a more sophisticated algorith, rp::decimal notifyRaycastHit(const rp::RaycastInfo& raycastInfo) override { // If the detected object is further away than the nearest object, continue. int distance = (raycastInfo.worldPoint - startPos).length(); if (nearestHitDistance != -1 && distance >= nearestHitDistance) return 1; if (!filter) { nearestHit = raycastInfo; nearestHitDistance = distance; return 1; } std::shared_ptr part = partFromBody(raycastInfo.body); FilterResult result = filter.value()(part); if (result == FilterResult::BLOCK) { nearestHit = std::nullopt; nearestHitDistance = distance; return 1; } else if (result == FilterResult::TARGET) { nearestHit = raycastInfo; nearestHitDistance = distance; return 1; } return 1; }; public: NearestRayHit(rp::Vector3 startPos, std::optional filter = std::nullopt) : startPos(startPos), filter(filter) {} std::optional getNearestHit() { return nearestHit; }; }; std::optional Workspace::CastRayNearest(glm::vec3 point, glm::vec3 rotation, float maxLength, std::optional filter, unsigned short categoryMaskBits) { // std::scoped_lock lock(globalPhysicsLock); rp::Ray ray(glmToRp(point), glmToRp(glm::normalize(rotation)) * maxLength); NearestRayHit rayHit(glmToRp(point), filter); physicsWorld->raycast(ray, &rayHit, categoryMaskBits); return rayHit.getNearestHit(); } void Workspace::DestroyRigidBody(rp::RigidBody* rigidBody) { std::scoped_lock lock(globalPhysicsLock); physicsWorld->destroyRigidBody(rigidBody); } void Workspace::DestroyJoint(rp::Joint* joint) { std::scoped_lock lock(globalPhysicsLock); physicsWorld->destroyJoint(joint); } rp::Joint* Workspace::CreateJoint(const rp::JointInfo& jointInfo) { std::scoped_lock lock(globalPhysicsLock); rp::Joint* joint = physicsWorld->createJoint(jointInfo); return joint; } void Workspace::AddBody(std::shared_ptr part) { queueLock.lock(); bodyQueue.push_back({part, QueueItem::QUEUEITEM_ADD}); part->rigidBodyDirty = true; queueLock.unlock(); } void Workspace::RemoveBody(std::shared_ptr part) { queueLock.lock(); bodyQueue.push_back({part, QueueItem::QUEUEITEM_REMOVE}); queueLock.unlock(); }