openblocks/core/src/rendering/renderer.cpp

415 lines
No EOL
15 KiB
C++

#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <GL/gl.h>
#include <cstdio>
#include <glm/ext.hpp>
#include <glm/ext/matrix_float4x4.hpp>
#include <glm/ext/matrix_transform.hpp>
#include <glm/ext/vector_float3.hpp>
#include <glm/glm.hpp>
#include <glm/trigonometric.hpp>
#include <memory>
#include "datatypes/cframe.h"
#include "shader.h"
#include "mesh.h"
#include "defaultmeshes.h"
#include "../camera.h"
#include "../common.h"
#include "../objects/part.h"
#include "skybox.h"
#include "surface.h"
#include "texture3d.h"
#include "renderer.h"
Shader* shader = NULL;
Shader* skyboxShader = NULL;
Shader* handleShader = NULL;
Shader* identityShader = NULL;
Shader* ghostShader = NULL;
Shader* wireframeShader = NULL;
Shader* outlineShader = NULL;
extern Camera camera;
Skybox* skyboxTexture = NULL;
Texture3D* studsTexture = NULL;
bool wireframeRendering = false;
static int viewportWidth, viewportHeight;
void renderInit(GLFWwindow* window, int width, int height) {
viewportWidth = width, viewportHeight = height;
glViewport(0, 0, width, height);
initMeshes();
glEnable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
// glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
skyboxTexture = new Skybox({
"assets/textures/skybox/null_plainsky512_lf.jpg",
"assets/textures/skybox/null_plainsky512_rt.jpg",
"assets/textures/skybox/null_plainsky512_up.jpg",
"assets/textures/skybox/null_plainsky512_dn.jpg",
"assets/textures/skybox/null_plainsky512_ft.jpg",
"assets/textures/skybox/null_plainsky512_bk.jpg",
}, GL_RGB);
studsTexture = new Texture3D("assets/textures/studs.png", 128, 128, 6, GL_RGBA);
// Compile shaders
shader = new Shader("assets/shaders/phong.vs", "assets/shaders/phong.fs");
skyboxShader = new Shader("assets/shaders/skybox.vs", "assets/shaders/skybox.fs");
handleShader = new Shader("assets/shaders/handle.vs", "assets/shaders/handle.fs");
identityShader = new Shader("assets/shaders/identity.vs", "assets/shaders/identity.fs");
ghostShader = new Shader("assets/shaders/ghost.vs", "assets/shaders/ghost.fs");
wireframeShader = new Shader("assets/shaders/wireframe.vs", "assets/shaders/wireframe.fs");
outlineShader = new Shader("assets/shaders/outline.vs", "assets/shaders/outline.fs");
}
void renderParts() {
glDepthMask(GL_TRUE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Use shader
shader->use();
// shader->set("objectColor", glm::vec3(1.0f, 0.5f, 0.31f));
// shader->set("lightColor", glm::vec3(1.0f, 1.0f, 1.0f));
// view/projection transformations
glm::mat4 projection = glm::perspective(glm::radians(45.f), (float)viewportWidth / (float)viewportHeight, 0.1f, 1000.0f);
glm::mat4 view = camera.getLookAt();
shader->set("projection", projection);
shader->set("view", view);
// shader->set("material", Material {
// // .ambient = glm::vec3(1.0f, 0.5f, 0.31f),
// .diffuse = glm::vec3(0.639216f, 0.635294f, 0.647059f),
// .specular = glm::vec3(0.5f, 0.5f, 0.5f),
// .shininess = 16.0f,
// });
shader->set("sunLight", DirLight {
.direction = glm::vec3(-0.2f, -1.0f, -0.3f),
.ambient = glm::vec3(0.2f, 0.2f, 0.2f),
.diffuse = glm::vec3(0.5f, 0.5f, 0.5f),
.specular = glm::vec3(1.0f, 1.0f, 1.0f),
});
shader->set("numPointLights", 0);
// shader->set("pointLights[0]", PointLight {
// .position = lightPos,
// .ambient = glm::vec3(0.4f, 0.4f, 0.4f),
// .diffuse = glm::vec3(1.0f, 1.0f, 1.0f),
// .specular = glm::vec3(1.0f, 1.0f, 1.0f),
// .constant = 1.0,
// .linear = 0.9,
// .quadratic = 0.32,
// });
studsTexture->activate(0);
shader->set("studs", 0);
// Pre-calculate the normal matrix for the shader
// Pass in the camera position
shader->set("viewPos", camera.cameraPos);
// Sort by nearest
std::map<float, std::shared_ptr<Part>> sorted;
for (auto it = gWorkspace()->GetDescendantsStart(); it != gWorkspace()->GetDescendantsEnd(); it++) {
InstanceRef inst = *it;
if (inst->GetClass()->className != "Part") continue;
std::shared_ptr<Part> part = std::dynamic_pointer_cast<Part>(inst);
if (part->transparency > 0.00001) {
float distance = glm::length(glm::vec3(Data::Vector3(camera.cameraPos) - part->position()));
sorted[distance] = part;
} else {
glm::mat4 model = part->cframe;
// if (part->name == "camera") model = camera.getLookAt();
model = glm::scale(model, part->size);
shader->set("model", model);
shader->set("material", Material {
.diffuse = part->color,
.specular = glm::vec3(0.5f, 0.5f, 0.5f),
.shininess = 16.0f,
});
glm::mat3 normalMatrix = glm::mat3(glm::transpose(glm::inverse(model)));
shader->set("normalMatrix", normalMatrix);
shader->set("texScale", part->size);
shader->set("transparency", part->transparency);
shader->set("surfaces[" + std::to_string(NormalId::Right) + "]", part->rightSurface);
shader->set("surfaces[" + std::to_string(NormalId::Top) + "]", part->topSurface);
shader->set("surfaces[" + std::to_string(NormalId::Back) + "]", part->backSurface);
shader->set("surfaces[" + std::to_string(NormalId::Left) + "]", part->leftSurface);
shader->set("surfaces[" + std::to_string(NormalId::Bottom) + "]", part->bottomSurface);
shader->set("surfaces[" + std::to_string(NormalId::Front) + "]", part->frontSurface);
CUBE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, CUBE_MESH->vertexCount);
}
}
// TODO: Same as todo in src/physics/simulation.cpp
// According to LearnOpenGL, std::map automatically sorts its contents.
for (std::map<float, std::shared_ptr<Part>>::reverse_iterator it = sorted.rbegin(); it != sorted.rend(); it++) {
std::shared_ptr<Part> part = it->second;
glm::mat4 model = part->cframe;
// if (part->name == "camera") model = camera.getLookAt();
model = glm::scale(model, part->size);
shader->set("model", model);
shader->set("material", Material {
.diffuse = part->color,
.specular = glm::vec3(0.5f, 0.5f, 0.5f),
.shininess = 16.0f,
});
glm::mat3 normalMatrix = glm::mat3(glm::transpose(glm::inverse(model)));
shader->set("normalMatrix", normalMatrix);
shader->set("texScale", part->size);
shader->set("transparency", part->transparency);
shader->set("surfaces[" + std::to_string(NormalId::Right) + "]", part->rightSurface);
shader->set("surfaces[" + std::to_string(NormalId::Top) + "]", part->topSurface);
shader->set("surfaces[" + std::to_string(NormalId::Back) + "]", part->backSurface);
shader->set("surfaces[" + std::to_string(NormalId::Left) + "]", part->leftSurface);
shader->set("surfaces[" + std::to_string(NormalId::Bottom) + "]", part->bottomSurface);
shader->set("surfaces[" + std::to_string(NormalId::Front) + "]", part->frontSurface);
CUBE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, CUBE_MESH->vertexCount);
}
}
void renderSkyBox() {
glDepthMask(GL_FALSE);
glCullFace(GL_FRONT);
glFrontFace(GL_CW);
skyboxShader->use();
glm::mat4 projection = glm::perspective(glm::radians(45.f), (float)viewportWidth / (float)viewportHeight, 0.1f, 1000.0f);
// Remove translation component of view, making us always at (0, 0, 0)
glm::mat4 view = glm::mat4(glm::mat3(camera.getLookAt()));
skyboxShader->set("projection", projection);
skyboxShader->set("view", view);
skyboxShader->set("uTexture", 0);
CUBE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, 36);
}
void renderHandles() {
if (editorToolHandles->adornee.expired() || !editorToolHandles->active) return;
glDepthMask(GL_TRUE);
glCullFace(GL_BACK);
glFrontFace(GL_CCW); // This is right... Probably.....
// Use shader
handleShader->use();
// view/projection transformations
glm::mat4 projection = glm::perspective(glm::radians(45.f), (float)viewportWidth / (float)viewportHeight, 0.1f, 1000.0f);
glm::mat4 view = camera.getLookAt();
handleShader->set("projection", projection);
handleShader->set("view", view);
handleShader->set("sunLight", DirLight {
.direction = glm::vec3(-0.2f, -1.0f, -0.3f),
.ambient = glm::vec3(0.2f, 0.2f, 0.2f),
.diffuse = glm::vec3(0.5f, 0.5f, 0.5f),
.specular = glm::vec3(1.0f, 1.0f, 1.0f),
});
handleShader->set("numPointLights", 0);
// Pass in the camera position
handleShader->set("viewPos", camera.cameraPos);
for (auto face : HandleFace::Faces) {
glm::mat4 model = editorToolHandles->GetCFrameOfHandle(face);
model = glm::scale(model, (glm::vec3)editorToolHandles->HandleSize(face));
handleShader->set("model", model);
handleShader->set("material", Material {
.diffuse = glm::abs(face.normal),
.specular = glm::vec3(0.5f, 0.5f, 0.5f),
.shininess = 16.0f,
});
glm::mat3 normalMatrix = glm::mat3(glm::transpose(glm::inverse(model)));
handleShader->set("normalMatrix", normalMatrix);
if (editorToolHandles->handlesType == HandlesType::MoveHandles) {
ARROW_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, ARROW_MESH->vertexCount);
} else {
SPHERE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, SPHERE_MESH->vertexCount);
}
}
// 2d square overlay
glDisable(GL_CULL_FACE);
identityShader->use();
identityShader->set("aColor", glm::vec3(0.f, 1.f, 1.f));
for (auto face : HandleFace::Faces) {
Data::CFrame cframe = editorToolHandles->GetCFrameOfHandle(face);
glm::vec4 screenPos = projection * view * glm::vec4((glm::vec3)cframe.Position(), 1.0f);
if (screenPos.z < 0) continue;
glm::vec3 ndcCoords = screenPos / screenPos.w;
float rad = 5;
float xRad = rad * 1/viewportWidth;
float yRad = rad * 1/viewportHeight;
glBegin(GL_QUADS);
glVertex3f(ndcCoords.x - xRad, ndcCoords.y - yRad, 0);
glVertex3f(ndcCoords.x + xRad, ndcCoords.y - yRad, 0);
glVertex3f(ndcCoords.x + xRad, ndcCoords.y + yRad, 0);
glVertex3f(ndcCoords.x - xRad, ndcCoords.y + yRad, 0);
glEnd();
}
}
void renderAABB() {
glDepthMask(GL_TRUE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Use shader
ghostShader->use();
// view/projection transformations
glm::mat4 projection = glm::perspective(glm::radians(45.f), (float)viewportWidth / (float)viewportHeight, 0.1f, 1000.0f);
glm::mat4 view = camera.getLookAt();
ghostShader->set("projection", projection);
ghostShader->set("view", view);
// Pass in the camera position
ghostShader->set("viewPos", camera.cameraPos);
ghostShader->set("transparency", 0.5f);
ghostShader->set("color", glm::vec3(1.f, 0.f, 0.f));
// Sort by nearest
for (InstanceRef inst : gWorkspace()->GetChildren()) {
if (inst->GetClass()->className != "Part") continue;
std::shared_ptr<Part> part = std::dynamic_pointer_cast<Part>(inst);
glm::mat4 model = Data::CFrame::IDENTITY + part->cframe.Position();
printf("AABB is supposedly (%f, %f, %f)\n", part->GetAABB().X(), part->GetAABB().Y(), part->GetAABB().Z());
model = glm::scale(model, (glm::vec3)part->GetAABB());
ghostShader->set("model", model);
glm::mat3 normalMatrix = glm::mat3(glm::transpose(glm::inverse(model)));
ghostShader->set("normalMatrix", normalMatrix);
CUBE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, CUBE_MESH->vertexCount);
}
}
void renderWireframe() {
glDepthMask(GL_TRUE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CW);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glPolygonMode( GL_FRONT_AND_BACK, GL_LINE );
// Use shader
wireframeShader->use();
// view/projection transformations
glm::mat4 projection = glm::perspective(glm::radians(45.f), (float)viewportWidth / (float)viewportHeight, 0.1f, 1000.0f);
glm::mat4 view = camera.getLookAt();
wireframeShader->set("projection", projection);
wireframeShader->set("view", view);
// Pass in the camera position
wireframeShader->set("viewPos", camera.cameraPos);
wireframeShader->set("transparency", 0.5f);
wireframeShader->set("color", glm::vec3(1.f, 0.f, 0.f));
// Sort by nearest
for (InstanceRef inst : gWorkspace()->GetChildren()) {
if (inst->GetClass()->className != "Part") continue;
std::shared_ptr<Part> part = std::dynamic_pointer_cast<Part>(inst);
glm::mat4 model = part->cframe;
model = glm::scale(model, (glm::vec3)part->size);
wireframeShader->set("model", model);
glm::mat3 normalMatrix = glm::mat3(glm::transpose(glm::inverse(model)));
wireframeShader->set("normalMatrix", normalMatrix);
CUBE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, CUBE_MESH->vertexCount);
}
glPolygonMode( GL_FRONT_AND_BACK, GL_FILL );
}
void renderOutlines() {
glDepthMask(GL_TRUE);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
glFrontFace(GL_CCW);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
// Use shader
outlineShader->use();
// view/projection transformations
glm::mat4 projection = glm::perspective(glm::radians(45.f), (float)viewportWidth / (float)viewportHeight, 0.1f, 1000.0f);
glm::mat4 view = camera.getLookAt();
outlineShader->set("projection", projection);
outlineShader->set("view", view);
// Pass in the camera position
outlineShader->set("viewPos", camera.cameraPos);
// outlineShader->set("color", glm::vec3(1.f, 0.f, 0.f));
// Sort by nearest
for (auto it = gWorkspace()->GetDescendantsStart(); it != gWorkspace()->GetDescendantsEnd(); it++) {
InstanceRef inst = *it;
if (inst->GetClass() != &Part::TYPE) continue;
std::shared_ptr<Part> part = std::dynamic_pointer_cast<Part>(inst);
if (!part->selected) continue;
glm::mat4 model = part->cframe;
model = glm::scale(model, (glm::vec3)part->size + glm::vec3(0.2));
outlineShader->set("model", model);
outlineShader->set("scale", part->size + glm::vec3(0.1));
OUTLINE_MESH->bind();
glDrawArrays(GL_TRIANGLES, 0, OUTLINE_MESH->vertexCount);
}
}
void render(GLFWwindow* window) {
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderSkyBox();
renderHandles();
renderParts();
renderOutlines();
if (wireframeRendering)
renderWireframe();
// TODO: Make this a debug flag
// renderAABB();
}
void setViewport(int width, int height) {
viewportWidth = width, viewportHeight = height;
}